Whole Program Paths

James R. Larus Microsoft Research (PLDI'99)

Presented by Haipeng Cai 10/06/2015

What is a *path*

- A dynamic control-flow trace (of a procedure)
- Representation: sum of edge encoding (int)

What is a whole program path

- A dynamic control-flow trace (of the entire program)
- Representation: a context-free grammar (as a DAG)

$$S \rightarrow 14AAACC3$$

$$A \rightarrow 24$$

$$14242424$$

$$25252525253$$

$$B \rightarrow 25$$

$$C \rightarrow BB$$

Path Profiling vs Whole Program Path

- EPP
 - Acyclic paths: approximation only for loops
 - Intraprocedural profiling
- WPP
 - Path crossing procedure boundaries
 - Interprocedural profiling

WPP profiling: overview

Phase 1: collect acyclic path traces

• A sequence of opcode-operand pairs

OpCode(Operand)	Meaning
EnterRoutine(ID)	Subsequent paths execute in routine ID
LeaveRoutine()	Leave current routine and return to previous one
NewPath(ID)	Path ID executed
EnterThread(ID)	Subsequent paths execute in thread ID

Phase 1: collect acyclic path traces

Path

- Explain output string as context-free grammar:
 - Efficient compression
 - Automatic subsequence grouping
- Grammar creation
 - Append symbols to start rule
 - Diagrams appear at most 14242 25252525253 once
 - Rules must be used at least twice

<u>Acyclic</u>	<u>SEQUITUR</u>				
ath Trace	Grammar				
242424	$S \rightarrow 14AAACC3$ $A \rightarrow 24$ $B \rightarrow 25$				

 $C \rightarrow BB$

- Enhanced SEQUITUR
 - Looking ahead a symbol before introducing a new rule
 - Trying to apply existing rules

• SEQUITUR original

string: 11111211111

Application of WPP: hot subpaths

• A hot subpath

 A sequence of L or fewer consecutively executed acyclic paths that incur a cost of C or more.

- A minimal hot subpath
 - The shortest prefix of a subpath incurring cost C or more

Application of WPP: hot subpaths

- Cost measurement
 - Subpath cost = execution frequency x sum of costs of constituent acyclic paths
 - Single acyclic path cost = number of instructions along the acyclic path

Application of WPP: hot subpaths

- Find hot subpaths
 - Post-order traversal of WPP (DAG)
 - Recursively find minimal hot subpaths at descendant levels
 - Examine concatenated descendant subpaths

Evaluation: WPP

- Programs
 - 8 SPECINT95 benchmarks
 - Two commercial apps
- Metrics
 - Computation time
 - Storage cost

Evaluation: WPP

					1			1		1
Benchmark	Time	Trace Size	Trace/	WPP Size	WPP/	Trace/	Num	Num	Num	Rules/
	(sec)	(MB)	Sec	(MB)	Sec	WPP	Threads	Acyclic Paths	Rules	Path
099.go	90.1	2176.6	24.15	141.1	1.57	15.4	1	17,321	2,760,820	159.4
124.m88ksim	3.0	115.0	38.33	0.3	0.10	392.8	1	1,169	7,927	6.8
126.gcc	9.0	254.3	28.25	23.7	264	10,7	1	20,739	489,287	23.6
129.compress (train)	0.0	8.3	22230.90	0.2	632.59	35.1	1	364	5,857	16.1
130.li	4.0	300.4	75.08	2.6	0.64	116.9	1	966	62,076	64.3
132.jpeg	30	47.8	15.94	6.6	219	7.3	1	1,637	136,816	83.6
134.perl (jumble)	17.0	605.0	35.59	15.0	0.88	40.3	1	2,115	238,893	113.0
147.vortex	48.0	1598.8	33.31	6.6	0.14	241.9	1	5,310	136,269	25.7
SQL	120.0	628.7	5.24	21.1	0.18	29.9	22	193845	404110	2.6
WinWord	80	73.3	9.20	6.8	0.85	10.8	4	54254	139073	2.7
									-	

Evaluation: WPP

Figure 8. Whole Program Path performance running compress benchmark with various size input files.

Evaluation: hot subpaths

- Same benchmark programs
- Metrics
 - Maximum hot subpath length
 - Number of minimal hot subpaths
- Compare between two cost thresholds
 - 10,000
 - 100,000

Evaluation: hot subpaths

C = 10,000

C = 100,000

Summary

- Contributions
 - Produce longer paths across loop and procedure boundaries
 - Compress traces for time and cost efficiency
 - Application: hot subpath identification
- Limitations
 - Runtime overhead
 - Profiling duration constrained by space limits
 - Control-flow profile only