
Whole Program Paths

James R. Larus
Microsoft Research

(PLDI’99)

Presented by Haipeng Cai
10/06/2015

What is a path

• A dynamic control-flow trace (of a procedure)
• Representation: sum of edge encoding (int)

Presenter
Presentation Notes
Sequence of consecutively executed basic blocks (e.g., statements)

Basic block: a straight-line sequence of code with only one entry point and only one exit.

What is a whole program path

• A dynamic control-flow trace (of the entire
program)

• Representation: a context-free grammar (as a
DAG)

Presenter
Presentation Notes
A complete, compact record of a program’s entire control flow

Path Profiling vs Whole Program Path

• EPP
– Acyclic paths: approximation only for loops
– Intraprocedural profiling

• WPP
– Path crossing procedure boundaries
– Interprocedural profiling

Presenter
Presentation Notes
In short, compared to the EPP, WPP is an extension and enhancement.

The approximation in EPP for loops:
For loops, EPP captures entering and leaving path of a loop, missing the relation/connection between them (also able to tell #iterations of the loop)

WPP profiling: overview

Presenter
Presentation Notes
Input / ouput / the two phases in the algorithm

Phase 1: collect acyclic path traces

• A sequence of opcode-operand pairs

Presenter
Presentation Notes
WPP profiling uses a redefinition of a path: edges leading to basic block containing a procedure call terminate acyclic paths.

The path ID is the integer encoding of a path (edge value sums).

Separate traces by thread.

Phase 1: collect acyclic path traces

Presenter
Presentation Notes
Calculating Acyclic Paths:
Assign values to edges (first transform CFG to a DAG --- remove back edges)
Compute edge increments;
Place instrumentation on chords (determined by the maximal spanning tree of the DAG).

Phase 2: trace compression

• Explain output string as
context-free grammar:
– Efficient compression
– Automatic subsequence

grouping
• Grammar creation

– Append symbols to start rule
– Diagrams appear at most

once
– Rules must be used at least

twice

Presenter
Presentation Notes
This is the basic SEQUITUR algorithm, which inputs a string and outputs a grammar.

The grammar production observes two invariant properties:
Diagram uniqueness property;
Rule utility property.

Phase 2: trace compression

• Enhanced SEQUITUR
– Looking ahead a symbol before introducing a new

rule
– Trying to apply existing rules

Presenter
Presentation Notes
Called SEQUITUR (1);

Can produce smaller grammar than SEQUITUR does.

Phase 2: trace compression

• SEQUITUR original

• SEQUITUR (1)

Phase 2: trace compression

Presenter
Presentation Notes
Illustrate on the white board for both basic and enhanced SEQUITUR.

This is not a CFG!
Recovery of the string from the grammar: post-order traversal of the DAG.

Application of WPP: hot subpaths

• A hot subpath
– A sequence of L or fewer consecutively executed

acyclic paths that incur a cost of C or more.

• A minimal hot subpath
– The shortest prefix of a subpath incurring cost C or

more

Presenter
Presentation Notes
Subpath: sequence of consecutively executed acyclic paths.
Hot: frequently executed; or disproportionately expensive operations involved.

Why minimal hot subpath: Longer hot subpaths can be easily found by adding acyclic paths to the minimal subpath.

Why hot subpath after all: most of a program’s execution cost is accounted from a few hot subpaths. (performance debugging and tuning; where the optimization should focus on)

Application of WPP: hot subpaths

• Cost measurement
– Subpath cost = execution frequency x sum of costs

of constituent acyclic paths
– Single acyclic path cost = number of instructions

along the acyclic path

Application of WPP: hot subpaths

• Find hot subpaths
– Post-order traversal of WPP

(DAG)
– Recursively find minimal hot

subpaths at descendant
levels

– Examine concatenated
descendant subpaths

Presenter
Presentation Notes
The inputs to a hot-subpath finding algorithm:
The subpath length range (min length, max length) for L, the cost threshold for C

Recursion terminating condition: encountering terminals

Evaluation: WPP

• Programs
– 8 SPECINT95 benchmarks
– Two commercial apps

• Metrics
– Computation time
– Storage cost

Evaluation: WPP

Presenter
Presentation Notes
30MB/sec program trace (@200MHz CPU, 256M RAM)
1 MB/sec program path
30 grammar rules per path fragment
100,000 rules in grammar

Evaluation: WPP

Presenter
Presentation Notes
Result for one benchmark (compress program) only. Input size ranges from 100 to 1M bytes.
Compress time is uninstrumented execution time).

The metrics grow non-linearly because I/O dominates the costs (e.g., writing outputs) although the algorithm (the program itself) is linear.
WPP size grows relatively slow (slower than uninstrumented execution time);

Evaluation: hot subpaths

• Same benchmark programs
• Metrics

– Maximum hot subpath length
– Number of minimal hot subpaths

• Compare between two cost thresholds
– 10,000
– 100,000

Presenter
Presentation Notes
Cost is measured as shown before (for subpath cost measurement).

Evaluation: hot subpaths

C = 10,000 C = 100,000

Presenter
Presentation Notes
Number of hot subpaths discovered sharply decreases when the threshold increases.

Overall, the curves are mostly flat, meaning that only few new hot subpaths were found as the path length limit increases.

Summary

• Contributions
– Produce longer paths across loop and procedure

boundaries
– Compress traces for time and cost efficiency
– Application: hot subpath identification

• Limitations
– Runtime overhead
– Profiling duration constrained by space limits
– Control-flow profile only

Presenter
Presentation Notes
slowdown of about 15x (SEQUITUR performs online compression).

Later profilers deal with combining control-flow and data dependence tracing.

	Whole Program Paths��James R. Larus�Microsoft Research�(PLDI’99)�
	What is a path
	What is a whole program path
	Path Profiling vs Whole Program Path
	WPP profiling: overview
	Phase 1: collect acyclic path traces
	Phase 1: collect acyclic path traces
	Phase 2: trace compression
	Phase 2: trace compression
	Phase 2: trace compression
	Phase 2: trace compression
	Application of WPP: hot subpaths
	Application of WPP: hot subpaths
	Application of WPP: hot subpaths
	Evaluation: WPP
	Evaluation: WPP
	Evaluation: WPP
	Evaluation: hot subpaths
	Evaluation: hot subpaths
	Summary

Whole Program Paths

James R. Larus
Microsoft Research
(PLDI’99)

Presented by Haipeng Cai

10/06/2015

1

What is a path

A dynamic control-flow trace (of a procedure)

Representation: sum of edge encoding (int)

Sequence of consecutively executed basic blocks (e.g., statements)

Basic block: a straight-line sequence of code with only one entry point and only one exit.

2

What is a whole program path

A dynamic control-flow trace (of the entire program)

Representation: a context-free grammar (as a DAG)

A complete, compact record of a program’s entire control flow

3

Path Profiling vs Whole Program Path

EPP

Acyclic paths: approximation only for loops

Intraprocedural profiling

WPP

Path crossing procedure boundaries

Interprocedural profiling

In short, compared to the EPP, WPP is an extension and enhancement.

The approximation in EPP for loops:

For loops, EPP captures entering and leaving path of a loop, missing the relation/connection between them (also able to tell #iterations of the loop)

4

WPP profiling: overview

Input / ouput / the two phases in the algorithm

5

Phase 1: collect acyclic path traces

A sequence of opcode-operand pairs

WPP profiling uses a redefinition of a path: edges leading to basic block containing a procedure call terminate acyclic paths.

The path ID is the integer encoding of a path (edge value sums).

Separate traces by thread.

6

Phase 1: collect acyclic path traces

Calculating Acyclic Paths:

Assign values to edges (first transform CFG to a DAG --- remove back edges)

Compute edge increments;

Place instrumentation on chords (determined by the maximal spanning tree of the DAG).

7

Phase 2: trace compression

Explain output string as context-free grammar:

Efficient compression

Automatic subsequence grouping

Grammar creation

Append symbols to start rule

Diagrams appear at most once

Rules must be used at least twice

This is the basic SEQUITUR algorithm, which inputs a string and outputs a grammar.

The grammar production observes two invariant properties:

Diagram uniqueness property;

Rule utility property.

8

Phase 2: trace compression

Enhanced SEQUITUR

Looking ahead a symbol before introducing a new rule

Trying to apply existing rules

Called SEQUITUR (1);

Can produce smaller grammar than SEQUITUR does.

9

Phase 2: trace compression

SEQUITUR original

SEQUITUR (1)

10

Phase 2: trace compression

Illustrate on the white board for both basic and enhanced SEQUITUR.

This is not a CFG!

Recovery of the string from the grammar: post-order traversal of the DAG.

11

Application of WPP: hot subpaths

A hot subpath

A sequence of L or fewer consecutively executed acyclic paths that incur a cost of C or more.

A minimal hot subpath

The shortest prefix of a subpath incurring cost C or more

Subpath: sequence of consecutively executed acyclic paths.

Hot: frequently executed; or disproportionately expensive operations involved.

Why minimal hot subpath: Longer hot subpaths can be easily found by adding acyclic paths to the minimal subpath.

Why hot subpath after all: most of a program’s execution cost is accounted from a few hot subpaths. (performance debugging and tuning; where the optimization should focus on)

12

Application of WPP: hot subpaths

Cost measurement

Subpath cost = execution frequency x sum of costs of constituent acyclic paths

Single acyclic path cost = number of instructions along the acyclic path

13

Application of WPP: hot subpaths

Find hot subpaths

Post-order traversal of WPP (DAG)

Recursively find minimal hot subpaths at descendant levels

Examine concatenated descendant subpaths

The inputs to a hot-subpath finding algorithm:

The subpath length range (min length, max length) for L, the cost threshold for C

Recursion terminating condition: encountering terminals

14

Evaluation: WPP

Programs

8 SPECINT95 benchmarks

Two commercial apps

Metrics

Computation time

Storage cost

15

Evaluation: WPP

30MB/sec program trace (@200MHz CPU, 256M RAM)

1 MB/sec program path

30 grammar rules per path fragment

100,000 rules in grammar

16

Evaluation: WPP

Result for one benchmark (compress program) only. Input size ranges from 100 to 1M bytes.

Compress time is uninstrumented execution time).

The metrics grow non-linearly because I/O dominates the costs (e.g., writing outputs) although the algorithm (the program itself) is linear.

WPP size grows relatively slow (slower than uninstrumented execution time);

17

Evaluation: hot subpaths

Same benchmark programs

Metrics

Maximum hot subpath length

Number of minimal hot subpaths

Compare between two cost thresholds

10,000

100,000

Cost is measured as shown before (for subpath cost measurement).

18

Evaluation: hot subpaths

C = 10,000

C = 100,000

Number of hot subpaths discovered sharply decreases when the threshold increases.

Overall, the curves are mostly flat, meaning that only few new hot subpaths were found as the path length limit increases.

19

Summary

Contributions

Produce longer paths across loop and procedure boundaries

Compress traces for time and cost efficiency

Application: hot subpath identification

Limitations

Runtime overhead

Profiling duration constrained by space limits

Control-flow profile only

slowdown of about 15x (SEQUITUR performs online compression).

Later profilers deal with combining control-flow and data dependence tracing.

20

image1.png

120
100

160
160

image2.png

Path

ACDF
ACDEF
ABCDF
ABCDEF
ABDF
ABDEF

image3.png

S = 14AAACC3
A-24
B—25
C-BB

14242424
25252525253

image4.png

image5.png

Program

PP (Path Profiling Tool)

Whole
Program
Path (WPP)

o

< PPCompress

Instrumented Program

Acyclic
Paths

image6.png

OpCode(Operand)

Meaning

EnterRoutine (ID)

Subsequent paths execute in routine
ID

LeaveRoutine ()

Leave current routine and return to
pl‘CViOUS one

NewPath (ID)

Path ID executed

EnterThread (ID)

Subsequent paths execute in thread
ID

image7.png

int bar(int j) {
if (j < 5)
return j;
else
return O;

Acyclic
Paths Path Trace

bar (j) 14242424
25252525253

image8.png

Acyclic SEQUITUR

Path Trace Grammar

S — 14AAACC3
A —24
B—25
C —>BB

14242424
25252525253

image9.png

Start Rule Action

§ — 1111 createA — 11
5 — AAl211 applyA — 11

image10.png

string: 11111211111

image11.png

S — AAl2AlL create B — Al
S — AB2BA

image12.png

s — c2c
A - 11
C — AAl

image13.png

S — AAl12AA

image14.png

S — B3B4
A—>12

B AAl {_\

Figure 4. Grammar and WPP for the string 121213121214.

image15.png

Py

s,

Pz, Sz

image16.png

image17.png

10000

1000 —<&—Compress Time
—&—Instrumented Time
—&—Trace Size

100 WPP Size

—¥—PPCompress Time
=—@—Num Non-Terminals

Relative Performance

1 10 100 1000 10000
Relative Input Size

Figure 8. Whole Program Path performance running compress benchmark with various size input files.

image18.png

Number of Hot Subpatts

image19.png

e el SEwane

100

10

Maximum Path Length

Whole Program Paths

iosot researcn
(rorss)

